O Fachhochschule
Bonn-Rhein-Sieg
University of Applied Sciences

Fachbereich Informatik
Department of Computer Science

Master of Autonomous Systems 2007/2008

JAVA Tutorial:
A tutorial on JAVA Obiject Orientation

Sebastian Blumenthal, Geovanny Giorgana

Subject:
Agile Software Team Techniques

JAVA Tutorial: Table of Contents

Table of Contents

L (e o 18 o (o) o PRSP 1
2 ClaSS/ODJECES. ...ttt e e 2
P2t B O] T =T o) £ SRR 2
P20 I B @ V=T 5 (o 7= o [T RSO PPPPRPRRPPRR 6

2.2 SUMIMAIY ...ettttttieieeeeeee e e e e e e e e e e e ettt e et eeeeaaaeaaaesssaaasnnssnssseneeeeeeaaaaaaeesssnnannnnnes 7

I 1] =T 4] = 1 [-SSP 8
K 0t T O o =Y o | RSP 8
K2 @ V=T 4 4 To [o o TP 11
3.3 Abstract classes and methods ... 13
3.4 Constructors and iNheritancCe...........ccooooiiieiiiiie e 15
3.5 Class "ObJECE" ...t ————————————————an 15

4 POlYMOIPNISIM e e e e e e e e e e e e e e e e e 17
g o o 7= o) QPR ERRR 17
4.2 Polymorphism and abstract Classes.........ccccevviiiiiiiiiiiiiiiiiieeceeeeeee e 18

5 Information Niding ... 19
STt I o [o7 =T o AU 19
5.2 ACCESS MOMIfIEFS......ueiiiiiiiiiiiee e e e e e 19
5.3 Access modifiers for methods and fields............ccooovviiiiiiiccc 20

LG L =T = o RSP 22
0 o o =Y o) SR R 22
6.2 Definition of INterfaces..........ouvvveeiiii i 23
6.3 INtErfaCces @S tYPES.....uuuiiiiiiiiiiiii e 23
6.4 Interfaces as specifications.............oooiiiiiiiiii 24
6.5 Abstract class vs INterface............cceeiiiieiiiiiii 24

7 1 L= T £ P UPPRRRRI 25
7408 7o Uo7 =T o 25
74872 s -1 Lo {110 Ve 25
7.3 SYNCArONIZAION. ... 28

oY o] 011 T | SO 29
8.1 PACKAGE. ...cciiiiiiie e 29
8.2 Primitive types supported by Java..............uuueiiiiiiiiiiieee e 30

JAVA Tutorial: Introduction

1 Introduction

Java is high-level programming language which supports object oriented programming. It
is similar to C++ but there is a significant difference: Java uses a so called Virtual Ma-
chine (VM). The Virtual Machine can be seen as a software layer between binary code
and real hardware. Java compilers produce byfe code for the Virtual Machine instead of
compiling it to the hardware like compilers for other programming languages. The Virtual
Machine behaves like a simulated computer. In fact whenever Java byte code is executed
the Virtual Machine interprets the code and translates it into corresponding code for the
actual hardware.

This concept has some interesting advantages: first of all the program is portable. That
means a compiled Java program (byte code) can run on every Virtual Machine regardless
of the underlaying hardware or operating system. Only the Virtual Machine must be in-
stalled on the target system to run byte code. Another aspect of the Virtual Machine is that
a programmer doesn't have to care about hardware issues like low-level input/output oper-
ations or memory allocation. Even cleaning up free memory space is done within Java
(“Garbage Collector”).

Unfortunately the concept of the Virtual Machine bears a drawback: performance. One
can easily imagine that a code which has to be compiled on-the-fly while a program is run-
ning is slower than a precompiled machine code. But in practice the performance issue is
today a minor problem due to considerable power in “standard” PCs, especially when a

program primarily computes (non-CPU-intensive) I/O requests.

This tutorial is intended to serve as an introduction to the powerful world of object orienta-
tion. It addresses programmers with basic background about programming in Java, but lit-
tle knowledge about object-oriented programming. In the following chapters basic items
about object orientation like dealing with objects, information hiding, inheritance and poly-
morphism are discussed. Interfaces in Java and thread handling is also presented.

The main topics are explained by a brief description followed by an example and finalized

by a deeper explanation.

JAVA Tutorial: Class/objects

2 Class/objects

Object-oriented programming (OOP) is used to model some parts of the world in a com-
puter by using objects that appear in the problem domain. By making use of OOP we can
divide the whole complex program into well-defined parts — the objects- that can be built
and examined separately. This technique allows us to focus in only one part of the prob-
lem ignoring the details of the other parts. These two advantages are known as the princi-

ples of modularization and abstraction, respectively.

2.1 Concepts

The objects used in the model can be categorized, and a class describes, in an abstract

way, all objects of a particular kind.

For example, if we wanted to model a traffic simulation, we would have to deal with cars.
Is car a class or an object? To answer we may consider a few questions that help us to

make a decision.
Which color has a car? How fast can it go? Where is it right now?

We cannot answer these questions unless we talk about one specific car. The reason is

that the word “car” in this context refers to the class car.

Now, if we direct this same questions to one specific car, for example, “the old green car
that is parked at home in my garage”, we can answer the questions above. That car is
green, it doesn’t go very fast, and it is at home in my garage. Now we are taking about an

object, about one particular example of a car.

You can have as many objects of one class as you want. All the objects of the same class
will be described by using the same attributes, but the value of those attributes for each
object may be different. For instance, every car will have its own color, maximal speed,
current position, size, etc. In contrast, objects of a different class may have different fields.
A railway, for example, would have the attribute “number of wagons”, while a bicycle

would have the attribute “diameter of the wheels”.

The object attributes are referred to as fields. The number, types, and names of fields are
defined in a class, not in an object. When an object of a class is created, the object will

automatically have these fields. Although the fields are defined in a class, the values of

JAVA Tutorial: Class/objects

these fields are stored in the object.

We can communicate with objects and manipulate the fields of an object by invoking
methods on them. Objects usually do something if we invoke a method. The methods,
similarly to fields, are defined in the class of the object. As a result, all objects of a given
class have the same methods, and due to methods are invoked on objects, to know which

object to change when invoking a method is clear.

We shall now explain the way classes are defined and objects are created in Java by us-
ing an example. This example models a Book Storage System in a basic way. We define
a class — Book — that allows us to create as many objects as we want to represent differ-
ent Books of a Bookshop, for instance, and it is possible to store and to visualize the title

and price of each book at the moment it is created or later on.

The source code for the implementation of the class Book is shown below and explained

further after presenting it.

Book Class:

package ClassObjectsExample;

*

/
The class Book represents a Book object. Information
about the book is stored and can be retrieved.

Geovanny Giorgana and Sebastian Blumenthal
2008-01-13

% ok X % X X%

/

public class Book {

/* field declaration */
private String Title;
private double Price;

/* Initialize and object with default values */
public Book () {

Title = "Field empty";

Price = 0;

}

/* Initialize and object with predefined values */
public Book (String theTitle, double thePrice) {
Title = theTitle;
Price = thePrice;

}

/* Accessor method to return the Title of the book */

-3-

JAVA Tutorial: Class/objects

public void getTitle ()

{
System.out.println("Title: "+Title);

}

/* Accessor method to return the Price of the book */
public void getPrice ()
{

System.out.println ("Price: "+Price+ " Euro");

}

/* Mutator method to set the Title of the book */
public void setTitle(String Title)

{
this.Title= Title;
}

/* Mutator method to change the Price of the book */
public void setPrice (double Price)

{
this.Price= Price;

}

/* Method to print the Characteristics of the book */
public void displaydata ()

{
System.out.println ("Book: "+Title);
System.out.println ("Price: "+Price+ " Euro\n");

}

The first line of code corresponds to the declaration of the package where the class Book
corresponds (the reader can see at the appendix (chapter 8) to know more details about
packages). Then, as mentioned above, the class Book is created to allow us to define
Book objects. Each one of those Book objects will have two attributes -Title and Price- .
We have two ways to construct or initialize the objects, one is using default values, signal-
ing that the field Title is still empty and assigning a zero to the field Price, and the second
way consists in assigning values defined by the user. The first way can be used simply to
reserve data in memory for a new book whose attributes will be specified in the future. In
addition, we have four methods to access the fields of the objects, whether to change or
to retrieve the current value of their fields. The methods used to change the state of an
object are known as “mutator methods” and the methods to retrieve information about the
state of an object are known as “accesor methods”. Finally, we use the method displayda-

ta to print the value of the fields of an object to the text terminal.

What follows is to show the way how distinct objects from the class Book are created and
how to mutate and retrieve the state of those objects. The main class containing the main

function that is used to realize the just mentioned looks as follows.

-4 -

JAVA Tutorial: Class/objects

Main Class:

package ClassObjectsExample;

/**

* The class Bookshop has the main method where two objects of

* the class Book are created, SoftEng and DistSyst. A change

* of price is realized by using its mutator method. The results
* are displayed on screen.

*

* Geovanny Giorgana & Sebastian Blumenthal

* 2008-01-13

*/

public class Bookshop {
public static void main(String[] args) {

/* The objects SoftEng and DistSyst are created, the former
* does not have a detailed initialization while the latter
* i1s detailed from the beginning.

*/
Book SoftEng = new Book();
Book DistSyst = new Book ("Distributed Systems", 50);

/* Display the data of both books */
SoftEng.displaydatal() ;
DistSyst.displaydatal();

/* Set the correct values for the first object */
SoftEng.setTitle ("Softwate Engineering");
SoftEng.setPrice (45.00);

/* Display again the details of the first book to see
* the change in the values of its attributes.
*/

SoftEng.getTitle () ;

SoftEng.getPrice () ;

First, two objects are created -SoftEng and DistSyst-, the object SoftEng is created but ini-
tialized with default values because no parameters are passed to its constructor. The oth-
er object is initialized with values that are passed at the moment it is created, so the con-
structor of this object knows what values to assign to the fields Title and the Price of this
book. Then the state of the object is printed to the text terminal by using the method dis-

playdata of each object. The text seen in the text terminal looks as follows

Book: Field empty
Price: 0.0 Euro

JAVA Tutorial: Class/objects

Book: Distributed Systems
Price: 50.0 Euro

We can see that the state of each order is printed in the same order as it is required in the
main function, and for the object SoftEng we note that the default values were assigned to
its fields and for the object DistSyst the values passed through the parameters of its con-
structor were assigned. Now, suppose information about the first book is given to the user,
surely he would want to change the attributes of this object and he can do it by using the
mutator methods setTitle and setPrice provided in the definition of the class Book

(see code below).

/* Set the correct values for the first object */
SoftEng.setTitle ("Softwate Engineering");
SoftEng.setPrice (45.00);

After modifying the title and the price of the book the user could want to see in the text ter-
minal that the attributes of this object were correctly updated. To see these changes, the
accessor methods getTitle and getPrice can be used (see code below). We can use
the method displaydata to see both atttibutes of the objects, however, the mehods get-
Title and getPrice make possible to see the state of only one field of the object with-
out displaying the state of the other field.
/* Display again the details of the first book to see
:/the change in the values of its attributes.

SoftEng.getTitle()
SoftEng.getPrice();

The text terminal shows the changes when both accessor methods are called.

Title: Softwate Engineering
Price: 45.0 Euro

2.1.1 Overloading

Our class Book contains two constructors -Book () and Book (String theTitle, dou-
ble thePrice)-, but why?. This is because a class may contain more than one construc-
tor, offering more than one way to create an object. For our example, the user can either
reserve a place in memory for a new book without knowing the exact title and correct price
of this book or create a new book in the system and assign the exact title and correct price

at the moment he creates the book.

JAVA Tutorial: Class/objects

What distincts a constructor from others is its set of parameters (which is also called sig-
nature). Our first constructor does not receive parameters while the second receives the
title and the price. Remember that the constructor of a class is called every time a new ob-

ject of this class is created. This is known as Overloading a constructor or method.

2.2 Summary
In this section we learned the basic principles of object-oriented programming, how class-
es are declared, objects and created, how methods can be used to access or mutate

fields of objects and the concept of overloading a constructor or a method.

JAVA Tutorial: Inheritance

3 Inheritance

3.1 Concept

Programmers are lazy. They don't want to write new code when a previous module al-
ready serves the needed core elements. Copy and past is not an option so we need
something else: inheritance. With inheritance we can use en existing class and extend it
with new features like new methods or variables (attributes). This concept avoids code du-
plication which helps to maintain software. Consider a module that has duplicates. When
a change in the software must done this wold apply to all modules. Identifying and chang-

ing the code in the correct places is very fragile to errors.

Example:

package InheritanceExample;

/**

* Geovanny Giorgana & Sebastian Blumenthal
* 2008-01-13

*/

public class MusicPlayer {
public int songNumber; //just an example

public MusicPlayer () {
//initialize e.g. display
}

public void play () {
//do something meaningful...

}

public void stop () {
//do something meaningful...

}

MusicPlayer is the existing “father” or “super” class. The next two inheritate from “Music-

Player”:

package InheritanceExample;

/**

* Geovanny Giorgana & Sebastian Blumenthal
* 2008-01-13

*/

public class Walkman extends MusicPlayer {

JAVA Tutorial: Inheritance

/* Object variables of MusicPlayer are implicit available
* because of inheritance.

*/

/* constructor */
public Walkman () {
//init Walkman...

}

public void ejectCassette() {
//do something meaningful...

}

/* Methods from MusicPlayer are implicit available because of
* inheritance.

*/

package InheritanceExample;

/**
* @author Geovanny Giorgana & Sebastian Blumenthal
* @version 2008-01-13
*/

public class IPod extends MusicPlayer {

/* Object variables of MusicPlayer are implicit available
* because of inheritance.

*/

/* constructor */
public IPod() {
//init IPod...

}

public void searchSong(String query) {
//do something meaningful...

}

/* Methods from MusicPlayer are implicit available because of
* inheritance.

*/

Main class:

package InheritanceExample;

/**

* @author Geovanny Giorgana & Sebastian Blumenthal
* @version 2008-01-13

*/

public class MusicListener {

JAVA Tutorial: Inheritance

/**
* args
*/
public static void main(String[] args) {
/* use music players: */

/* generic music player */
MusicPlayer myPlayer = new MusicPlayer();

myPlayer.play();
// enjoy music ;-)
myPlayer.stop ()

/* use a Walkman */
Walkman myWalkman = new Walkman () ;

myWalkman.play(); //inherited from MusicPlayer
// enjoy music ;-)
myWalkman.stop(); //inherited from MusicPlayer

myWalkman.ejectCassette () ;

/* use an IPod */
IPod myIPod = new IPod();

myIPod.play(); //inherited from MusicPlayer
// enjoy music ;-)

myIPod.searchSong ("Nothing else matters");
// enjoy another song

myIPod.stop(); //inherited from MusicPlayer

To enable inheritance the keyword extends must be used. It is followed by the class to be
inherited. In Java only one super/father class is allowed (single inheritance). All methods
and object variables from the father class are available to the “children” (as long as they
are not private (see chapter 5)). Of course children could be also father classes to other
classes — so a hole inheritance hierarchy can be created. In our example we can utilize an

ULM class diagram’ to make to the hierarchy more clear (compare lllustration 1).

1 For more details take a glance at the UML tutorial

-10 -

JAVA Tutorial: Inheritance

= MusicPlayer

Al songrumber

@ MusicPlayer()

@ play()
@ stop))
= 1Pod = Walkman
&5 Pod() &5 Wialkman()
£} searchSongl) £} ejectCassettel)

lllustration 1: Inheritance hierarchy (created by
eclipse UML plugin)

3.2 Overriding
Sometimes inherited methods in a child class work/behave different so the super-class
method must be overridden. For example the stop button for a MP3Player has a different

behavior: when it is pressed longer than three seconds it turns off the hole device:

package OverridingExample;
import InheritanceExample.MusicPlayer; //reuse old stuff

/**
* sblume2s
*
*/
public class MP3Player extends MusicPlayer {

public int songNumber; //overrides variable from MusicPlayer

/* constructor */
public MP3Player () {
//init MP3Player...

/* accessing overridden variables */
this.songNumber = 0; /* "this" addresses
* elements from this class

*/

super.songNumber = 0; /* "super" addresses
* elements from father/super
* class
*/
}

/* override stop method from father class because
* it works different (e.g. holding the stop button

-11 -

JAVA Tutorial: Inheritance

* longer than three seconds turns off the hole device)
*/
public void stop () {
/* do something different than in the father class
* (of course "father method" stop can be accessed via
* super.stop () 1f needed)
*/
//measure how long button was pressed...

}

/* Remaining methods from MusicPlayer are implicit available
* because of inheritance.

*/

Main class:

package OverridingExample;

/**
* Geovanny Giorgana & Sebastian Blumenthal
* 2008-01-13
*/
public class MusiclListener2 {
/*‘k
* args
*/

public static void main(String[] args) {
/* use MP3Player players: */

MP3Player myMp3Player = new MP3Player();

myMp3Player.play () ;
myMp3Player.stop(); // use overridden method

Overriding a method or variables just done by writing a new method/variable in the chil-

dren class with the same name. To access an overridden element use this and to access

the original element use super. (Cascading calls like super.super.x are not allowed that

means it is impossible to access a father's father (grandfather :-)) method/variable) De-

fault is this.

When a method/variable is overridden in an inheritance hierarchy the hierarchy “tree” is

scanned bottom up and the first found overridden method/variable is used.

-12 -

JAVA Tutorial: Inheritance

3.3 Abstract classes and methods

In some cases it can be useful that a child class is forced to override a method. For exam-
ple the father class models an operating system control. Every operating system shall
have the ability to be turned off but how this turning off mechanism works is operating sys-

tem dependent. So we could use an abstract class:

package AbstractClassExample;

/**

* Geovanny Giorgana & Sebastian Blumenthal
* 2008-01-13

*/

public abstract class OperatingSystemControl {

/* constructor */

public OperatingSystemControl () {
// init this module

}

/* abstract method */

abstract public void turnOff(); /* this method MUST
be overridden in
hildren classes */

package AbstractClassExample;

/**

* Geovanny Giorgana & Sebastian Blumenthal
* 2008-01-13

*/

public class WindowsControl extends OperatingSystemControl {

/* constructor */
public WindowsControl () {
//init module

}

/* override method from father class;
* this in mandatory because turnOff is abstract within
* OperatingSystemControl
*/
public void turnOff () {
/* turn off mechanism for a Windows system is
* implemented here

*/

-13-

JAVA Tutorial: Inheritance

package AbstractClassExample;

/**

* @author Geovanny Giorgana & Sebastian Blumenthal
* @version 2008-01-13
*/
public class LinuxControl extends OperatingSystemControl ({

/* constructor */
public LinuxControl () {
// init module

}

/* override method from father class;
* this in mandatory because turnOff is abstract within
* OperatingSystemControl
*/
public void turnOff () {
/* turn off mechanism for a Linux system is
* implemented here

*/

Main class:

package AbstractClassExample;

/**

* @author Geovanny Giorgana & Sebastian Blumenthal
* @version 2008-01-13
*/

public class OperatingSystemControlTest {

public static void main(String[] args) {
//OperatingSystemControl myOS = new OperatingSystemControl () ;
//abstract classes can not be initialized!
LinuxControl myLinux = new LinuxControl () ;
WindowsControl myWindos = new WindowsControl () ;

myLinux.turnOff () ;
myWindos.turnOff () ;

OperatingSystemControl is an abstract class therefore the keyword abstract is put in
front of class. abstract public void turnOff(); creates an abstract method that
must be overridden. Note that this statement ends with ; instead of some kind of block in-

dicated by brackets: {}.
In this example the father class doesn't know about internal workings about the turn off

-14 -

JAVA Tutorial: Inheritance

mechanism. It is implemented in the child classes. In fact they are in a certain way substi-
tutable with the help of polymorphism (refer to chapter 4).

As shown in OperatingSystemControlTest an abstract class can never been initialized.

3.4 Constructors and inheritance

Within Java it is possible to address a constructor method of a father class:

package ConstructorInheritanceExample;

import InheritanceExample.MusicPlayer;

/**

* Geovanny Giorgana & Sebastian Blumenthal
* 2008-01-13

*/

public class IPod2 extends MusicPlayer {

/* constructor of child */
public IPod2 () {
super () ;//explicit call of father class constructor
/* this must be done as first statement;
* here it is optionally because super without
* any parameters is fit in automatically by the
* compiler

*/

/..

Whenever an object is created (new operator) a constructor is called. If inheritance is used
the constructor of the class the object created of is called (like normal classes). But implic-
itly or directly the constructor of the father class is also called. Too do so directly use su-
per () ; as first statement in the constructor. If the constructor of the father class has pa-
rameters they can be passed e.g. by super (int examlel, boolean examle2); If super
is not used the compiler fills it in automatically. (As a consequence the constructor with no

parameters is invoked of the super class).

3.5 Class "Object"”

If no inheritance is used a class implicitly inherits from the class “Object’. Either a class in-
herits from Object or it belongs to a self programmed inheritance hierarchy. But he “root”

node of such a hierarchy also inherits from Object. As a consequence every class directly

-15-

JAVA Tutorial: Inheritance

or indirectly inherits from Object. It something like a “master” class. The class Object deliv-
ers some interesting features like cloning objects or get a textual representation. For more

information refer to the Java documentation.

-16 -

JAVA Tutorial: Polymorphism

4 Polymorphism

4.1 Concept
Polymorphism is about the ability that inheritance can be used to easily substitute classes

with children classes.

Main Class:

package PolymorhphismExample;
import InheritanceExample.*; //reuse old stuff

/**
* @author Geovanny Giorgana & Sebastian Blumenthal
* @version 2008-01-13
*/

public class MusicListerner3 ({

public static void main (String[] args) {
/* create players */
Walkman myWalkman = new Walkman(); //normal variant
MusicPlayer myPolyWalkman = (MusicPlayer) new Walkman () ;
//polymorph variant
/* because of inheritance "Walkman" has all the needed

* methods (and variables) to behave like ("simulate™)
* MusicPlayer...

*/

IPod myIPod = new IPod(); //normal variant

MusicPlayer myPolyIPod = new IPod();//polymorph variant

/* use Walkman */
myWalkman.play () ;
myWalkman.stop () ;
myWalkman.ejectCassette () ;

/* use second Walkman object created with the help of
* polymorphism
*/
myPolyWalkman.play () ;
myPolyWalkman.stop () ;
//myPolyWalkman.ejectCassette () ;
/* doesn't work because MusicPlayer has no
* ejectCassette () method;
* although a child is created only the methods of
* the used type (father class MusicPlayer)can be used;

*/

/* use IPod */
myIPod.play () ;
myIPod.searchSong ("Nothing else matters");
myIPod.stop () ;

-17 -

JAVA Tutorial: Polymorphism

/* use second IPod object created with the help of
* polymorphism
*/
myPolyIPod.play () ;
//myPolyIPod.searchSong ("Nothing else matters");
/* doesn't work because MusicPlayer has no
* searchSong (String name) method;
*/
myPolyIPod.stop () ;

As shown in the previous example, classes can have instances from they sub/child class-
€S: MusicPlayer myPolyWalkman = new Walkman (); Walkman is a child class of Mu-
sicPlayer and can serve all the methods/variables of MusicPlayer. That is why this state-
ment is not an error. Only methods/variables from MusicPlayer can be used. It can be
seen as a typecast from a Walkman to a MusicPlayer object. In fact it is a typecast be-
cause all classes in Java are types! The mentioned statement can be written as an explicit
typecast: MusicPlayer myPolyWalkman = (MusicPlayer) new Walkman () ;

The instance of a type can be a child class or an arbitrary descendant class from an inher-

itance hierarchy.

4.2 Polymorphism and abstract classes

The reader may now wonder: why do we use polymorphism? Wouldn't it has been easier
in the example of section 4.1 to use MusicPlayer myPlayer = new MusicPlayer () ; in-
stead of MusicPlayer myPolyWalkman = new Walkman () ; because we can not use the
functions of the child class. The answer is yes. It was just an example to show how it basi-
cally works. But now consider a little modification: the MusicPlayer is rewritten into an ab-
stract class (see section 3.3). As a result MusicPlayer myPlayer = new
MusicPlayer () ; wouldn't work because it is impossible to create an object of an abstract
class. The only solution to create an object of type MusicPlayer is to utilize polymorphism:
MusicPlayer myPolyWalkman = new Walkman () OF MusicPlayer myPolyWalkman =

new IPod() ;.

-18 -

JAVA Tutorial: Information hiding

5 Information hiding

5.1 Concept
Information hiding is a principle that states that internal details of a class's implementation

should be hidden from other classes. It ensures better modularization of an application.

In many object-oriented programming languages the internal of a class -its implementa-
tion- are hidden from other classes. There are two main reasons: first, a programmer
should not need to know the internals; second, a class should not be allowed to know the

internals of another class.

The first principle -need to know- is related with abstraction and modularization. If it were
necessary to know of all classes we need to use, we would never finish implementing

large systems.

The second principle -not being allowed to know- has to do with modularization, but in a
different context. The private section of one class is not visible to any other class. This en-
sures that one class doesn't depend on the implementation of another class. It allows us
to make improvements or fix bugs in one class without making changes in other classes
as well. This issue is known as coupling: if changes in one part of a program do not make
it necessary to also make changes in another part of the program, this is know as weak

coupling or loose coupling, which is good.

5.2 Access modifiers
Access modifiers are the key words public, private and protected at the beginning of field

declarations, method and constructor signatures. For example:

//field declaration

private String Title;
private double Price;

//Constructors
public Book () {
}

// methods
public void getTitle ()
{

-19 -

JAVA Tutorial: Information hiding

Access modifiers define the visibility of a field, constructor or method. If an element (field,
method or constructor) is public, it can be accessed from inside the same class and from
any other classes. Private elements can be accessed only from within the class in which
they are declared. They are not visible to other classes. A protected element can be ac-
cessed only from inside the class in which they are declared and from direct or indirect

subclasses. Compare lllustration 2.

Client

} private

Subclass2

Subclass1

protected

lllustration 2: Access levels: public, private and protected

5.3 Access modifiers for methods and fields

Fields, constructors and methods can all be either public or private, although so far we

have seen mostly private fields and public constructors and methods.

A public method, as we will see mostly, are used to provide operations to users of a class
(to access or mutate a field). A private method is used to break up a larger task into sever-

al smaller ones to make the large task easier to handle. These sub-tasks are not intended

-20 -

JAVA Tutorial: Information hiding

to be invoked directly from outside the class, but are placed in separate methods purely to

make the implementation of a class easier to read.

Another reason for having a private method is for a task that is needed in several of a
class's methods. Instead of writing the code multiple times, we can write it once in a single
private method and then call this method from several different places.

In Java, fields can also be declared private or public, but using public fields breaks the in-
formation-hiding principle. It makes a class that depends on that information vulnerable to

incorrect operation if the implementation changes.

In short: fields should always be private.

-21-

JAVA Tutorial: Interfaces

6 Interfaces

6.1 Concept
Multiple inheritance exists in cases where one class inherits from more that one super-
class. The subclass then has all the features of both superclasses, and those defined in

the subclass itself.

Multiple inheritance can lead to significant complications in the implementation of a pro-
gramming language. Some languages allow the inheritance of multiple superclasses, oth-
er not. Java lies somewhere in the middle: it does not allow multiple inheritance of class-
es, but provides another construct, called 'interfaces', that allows a limited form of multiple

inheritance.

Interfaces are similar to classes, with the most obvious difference being that their method

definitions do not include method bodies.

Due to the fact that in one interface we will find the definition of the methods, and no bod-
ies for those methods, we can say that interfaces are similar to abstract classes in which

all methods are abstract.

Java interfaces have a number of significant features:

® The key word interface is used instead of class in the header of the declaration.

® All methods in an interface are abstract; no method bodies are permitted. The ab-
stract key word is not needed.

® Interfaces do not contain any constructors.

® All method signatures in an interface have public visibility. The visibility does not
need to be declared (i.e. The public key word is not needed for each method).

® Only constant fields (public, static and final) are allowed in an interface. The key

words may be omitted, but all fields are still treated as public, static and final.

Any class implementing one or more than one interface is forced to implement all the

methods of the interfaces.

-22-

JAVA Tutorial: Interfaces

6.2 Definition of Interfaces

A class can implement an interface, which is very similar to overriding abstract methods

from an abstract class. Java uses a key word — implements - for implementing interfaces.

A class is said to implement an interface if it includes an implements clause in its class

header. For instance:

//Interface and Class inheritance
public class Circles extends Shapes implements Drawable

{
}

In this case, the class Circles extends a class and implements an interface, then the ex-

tends clause must be written first in the class header.

As mentioned above, Java allows any class to implement any number of interfaces (in ad-
dition to possibly extending one class). Thus, if a class implements more than one inter-

face:

//Multiple inheritance of interfaces
public class Circles implements Drawable, Paintable, Visualizer{

}

6.3 Interfaces as types

If a class that implements an interface does not inherit any implementation from it, what

do we actually gain by implementing interfaces?

Inheritance provides two great benefits:

® Avoiding code duplication and reusing of existing code.
® The subclass becomes a subtype of the superclass. This allows polymorphic vari-

ables and method calls.

Interfaces do not provide the first benefit (since they do not implement any method), but
they provide the second. An interface defines a type just as a class does, allowing poly-
morphism because the variables can be declared to be of interface types, even though no

objects of that type can exist (only subtypes).

-23-

JAVA Tutorial: Interfaces

Interfaces can have no direct instances, but they serve as supertypes for instances of oth-

er classes.

6.4 Interfaces as specifications

We have mentioned that using interfaces is useful to simulate multiple inheritance in Java
and that it allows polymorphism, however the most important characteristic of interfaces is
that they completely separate the definition of the functionality from its implementation. It
means that two or more classes implementing an interface usually will have different char-
acteristics, but the same intrinsic behavior or functionality. This fact combined with poly-
morphism (interfaces as types) allows us to use the interface as a variable until we really
need to create a new object of some of the child classes, making our application work in-

dependently of the specific type of object we are currently using.

6.5 Abstract class vs Interface

Sometimes the decision between using an abstract class or an interface is easy: we need
to use an abstract class when we want a superclass which already implements some
methods. In other cases either abstract classes or interfaces can do the job. However, in-
terfaces are usually preferable because we can simulate multiple inheritance and we still

have the opportunity to inherit from a class.

-24 -

JAVA Tutorial: Threads

7 Threads

7.1 Concept

Java provides the possibility to parallelize programs. Processes are not available but Java
focuses on their closely relatives: threads. Threads are a build-in feature so not special
thread library is necessary. The nature of parallel programming is very different to “nor-
mal” sequential program flow. Different threads run completely uncoupled to each other
without special functionality you can not predict the internal stat of a threat relatively seen
from another thread or process. In a certain manner the behavior is nondeterministic. To
get more information about this the reader is advised to study chapter 3: Processes in
Tanenbaum, Andrew S.; van Steen, Maarten: Distributed Systems, Principles and

Paradigms, Prentice-Hall Inc., New Jersey, 2002.

7.2 Handling

In order to use a thread first a thread class must be defined which contains the code for

the thread. Then the thread must be instantiated and started.

Example Class:

package ThreadExample;

/**

* Geovanny Giorgana & Sebastian Blumenthal
* 2008-01-13

*/

public class NonsenseSpeaker extends Thread {
/* In order to use threads this class must inherit from
* "Thread". capabilities are inherited...

*/

/* shared variable */
static int globalPersonNumber = 0; //to distinguish printouts

/* this is the the "body" of the thread: it
* must be named "public void run()"
* (in fact it is overridden)
*/
public void run () {
globalPersonNumbert+;
int personNumber = globalPersonNumber;

/* just print some words */
for (int i=0; 1 < 100; i++) {
System.out.println ("Talker " + personNumber + ":
blub");

-25-

JAVA Tutorial: Threads

Main Class:

package ThreadExample;

/**

* Here a talk show is modeled. The moderator tries to speak
* something but he/she is interrupted by his audience. The
* audience 1is represented by threads. This example shall

* make clear the concurrent behavior.

*

* Geovanny Giorgana & Sebastian Blumenthal

* 2008-01-13

*/

public class TalkShow {

public static void main(String[] args) {
NonsenseSpeaker speakerl = new NonsenseSpeaker();
NonsenseSpeaker speaker?2 new NonsenseSpeaker();

/* let people start speaking */

speakerl.start(); /* start thread (implicitly "run"
is called) */

speaker2.start();

talkNonsenseAsModerator() ;

}

public static void talkNonsenseAsModerator () {
/* just print some words */
for (int 1=0; 1 < 100; 1i++) {
System.out.println ("Maderator: bla");

The first class NonsenseSpeaker contains the code for the thread. This class must inherit
from Thread. By doing so all the needed abilities to handle threads are inherited. The ac-
tual code is embodied in the public void run () method. In fact this overrides the
run () function of the father class.

To start the Thread just create an object of the previous defined thread class and run the
start () method. Note that the start method is invoked and not run () because start ()
triggers the initialization of the thread (which can take some time) and afterward the run ()

function is called. After finishing code in the run () function the thread is stopped.

-26 -

JAVA Tutorial: Threads

Due to the fact that Java only provides single inheritance the is an alternative to create
threads. The thread class must implement the “Runnable” Interface and implement the

run () method (in fact only public class NonsenseSpeaker2 implements Runnable
changes):

package ThreadExample;

/**

* Geovanny Giorgana & Sebastian Blumenthal
* 2008-01-13

*/

public class NonsenseSpeaker? implements Runnable {

/* In order to use threads this class must inherit from
* "Thread". capabilities are inherited...
*/

/* shared variable */
static int globalPersonNumber = 0; //to distinguish printouts

/* this is the the "body" of the thread: it
* must be named "public void run()"
* (in fact it is overridden)
*/
public void run () {
globalPersonNumbert++;
int personNumber = globalPersonNumber;

/* just print some words */
for (int 1=0; 1 < 100; 1i++) {
System.out.println ("Talker " + personNumber + ":
blub");

Starting the thread is quite similar with a little modification: an instance of Thread is creat-
ed with a reference to an instance of the thread class as parameter. Then start () is in-

voked on the Thread object:

NonsenseSpeaker?2 speakerl = new NonsenseSpeaker2 () ;
NonsenseSpeaker?2 speaker?2 new NonsenseSpeaker?2 () ;

/* little helper */
Thread realSpeakerl = new Thread (speakerl);
Thread realSpeaker2 = new Thread (speaker?2);

/* let people start speaking */

realSpeakerl.start(); /* start thread (implicitly "run"
is called) */

realSpeaker2.start () ;

-27 -

JAVA Tutorial: Threads

7.3 Synchronization

Whenever two or more threads want to invoke a method on the same object this could
(depending on the code) lead to competing situations. To avoid this synchronization is
needed. It ensures that only one thread can access the method at one time and other
threads are blocked until the thread working on that method returns from it's function call(
the behavior is mutual exclusive). To enable synchronization just use the synchronized

keyword:

public synchronized void myNiceMethod () {

Java provides some extended synchronization features like conditional synchronization

(wait/notify). For more details look into the Java documentation.

-28 -

JAVA Tutorial: Appendix

8 Appendix

8.1 Package
A package is a group of classes. Java has default packages, which can be used by the

user, however, the user can create his own packages.

To assign a class into a package call pkgName, for example, we need to write the follow-

ing clause:

package pkgName;

This clause must be the first sentence from the source code Java file without counting

comments and blank lines.

The name of the packages generally start with lowercase, to distinguish them from the
classes, which start with uppercase. The name of a package can have several names, all
of them gathered by dots (the own Java's packages follow this rule, for intance ja-

va.awt.event).

The packages are used due to the following reasons:

1. To gather related classes.
2. To avoid name problems.

3. To help in the classes and members accessibility control.

To bring a package into a Java file you need to use the clause import packname. Howev-
er, import a package do not make all the classes from this package to be accessible, only
the public classes will be accessible. In addition, when a package is imported, the sub-
packages will not be imported too. They must be imported explicitly, since they are differ-
ent packages. For instance, when we import java.awt the sub-package java.awt.event is

not imported.

The package java.lang is imported by default in Java.

-29 -

JAVA Tutorial: Appendix

8.2 Primitive types supported by Java

Java knows two kinds of type: primitive types and object types. Primitive types are stored

in variables directly, and they have value semantics (values are copied when assigned to

another variable). Object types are stored by storing references to the object (not the ob-

ject itself). When assigned to another variable, only the reference is copied, not the object.

The following table lists all the primitive types of the Java language:

Type Name Description Example literals
Integer numbers
byte Byte-sized (8-bit) integer 24 -2
short Short integer (16 bit) 137 -119
int Integer (32 bit) 5409 -2003
long Long integer (64 bit) 423266353 55L

Real numbers

float Single-precision floating point 43.889F
double Double-precision floating point 45.63 2.4e5
Other types
char A single character (16 bit) 'm' ' \uOOF¢6'
boolean A boolean value (true or false) true false

Table 1: primitive data types

-30-

	1Introduction
	2Class/objects
	2.1Concepts
	 2.1.1Overloading

	2.2 Summary

	3Inheritance
	3.1Concept
	3.2Overriding
	3.3Abstract classes and methods
	3.4Constructors and inheritance
	3.5Class "Object"

	4Polymorphism
	4.1Concept
	4.2Polymorphism and abstract classes

	5Information hiding	
	5.1Concept
	5.2Access modifiers
	5.3Access modifiers for methods and fields

	6Interfaces
	6.1Concept
	6.2Definition of Interfaces
	6.3Interfaces as types
	6.4 Interfaces as specifications
	6.5 Abstract class vs Interface

	7Threads	
	7.1Concept
	7.2Handling
	7.3Synchronization

	8Appendix 	
	8.1Package
	8.2Primitive types supported by Java

